X22B10T0

James V. Beck, Filippo de Monte, et al. – December 5, 2011

X22B10T0 = X22B(*t***1**)**0T0 problem**

fX22B10T0, fvX22B10T0

Heat conduction functions for the X22B10T0 case.

🖊 Syntax (Matlab)

```
Td = fX22B10T0(xd, td)
Td = fX22B10T0(xd, td, n)
Td = fvX22B10T0(xd, td)
Td = fvX22B10T0(xd, td, n)
```

4 Description

fX22B10T0 (*xd*, *td*) provides the dimensionless temperature distribution *Td* at a given dimensionless location *xd* from the heated surface, between 0 and 1, and at a given dimensionless time *td* with a default accuracy of 10^{-6} for a 1D Cartesian finite slab subject to a time-independent surface heat flux at one side (step change) and thermally insulated at the opposite side.

fvX22B10T0 (*xd*, *td*) provides the dimensionless temperature distribution *Td* in a matrix form for the same problem when *xd* and *td* are vectors defining the dimensionless locations and times of interest, respectively. If *xd* and *td* are vectors, length(*xd*) = *n* and length(*td*) = *m*, where [*m*,*n*] = size(*Td*). The default accuracy is of 10^{-6} .

fX22B10T0 (*xd*, *td*, *n*) and fvX22B10T0 (*xd*, *td*, *n*) give the dimensionless temperature distribution *Td* for the same problem with an accuracy of 10^{-n} (n = 1, 2, ...)

n = integer (1, 2, ..., 10, ...) for solution accuracy; n = 15 gives an accuracy of one part in 10^{15} (machine accuracy)

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

\rm Examples

Example 1

Td=fX22B10T0(0,.1,2)

Td =

0.356829372437085

Example 2

Td=fX22B10T0(0,.1,15)

Td =

0.356826246008654

Example 3

```
>> n=15
n =
  15
>> xd=[0.1 0.2 0.3]
xd =
  >> td=[0.1 0.2 0.3]
td =
 >> Td=fvX22B10T0(xd,td,n)
Td =
  0.265710758078575 0.411546515326888
                             0.528355069707451
  0.191930076891576 0.330554257779286
                             0.444845453330602
  0.134245086447475 0.261793430683321
                             0.372166721740129
```

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

```
Example 4
```

```
>> n=15
n =
   15
>> xd=[0.1 0.5 0.7]'
xd =
  0.100000000000000
   0.500000000000000
   0.700000000000000
>> td=[0.01 0.2]'
td =
   0.010000000000000
   0.20000000000000
>> Td=fvX22B10T0(xd,td,n)
Td =
   0.039928245674849 0.411546515326888
   0.000014352414313 0.158352196668220
   0.00000019773817 0.094884894165447
```

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

4 Schematic

4 Nomenclature

- k thermal conductivity $(W/(m \circ C))$
- L slab thickness (m)
- q_0 surface heat flux (W/m^2)
- t time (s)
- T temperature (°C)
- x Cartesian space coordinate (m)
- α thermal diffusivity (m^2/s)

4 Governing equations

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \qquad (0 < x < L; t > 0)$$

$$-k\left(\frac{\partial T}{\partial x}\right)_{x=0} = q_0 \qquad (t>0)$$

$$\left(\frac{\partial T}{\partial x}\right)_{x=L} = 0 \qquad (t>0)$$

$$T(x,0) = 0 \qquad (0 < x < L)$$

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

Exact short-time solution ([1, p. 112, Eq. (4), for the X22B01T0 case], [2, p. 196, Eq. (6.52b) with m = 0 and Eq. (6.53c)])

$$T(x,t) = 2 \frac{q_0 \sqrt{\alpha t}}{k} \operatorname{ierfc}\left(\frac{x}{2\sqrt{\alpha t}}\right) + 2 \frac{q_0 L}{k} \left(\frac{\alpha t}{L^2}\right)^{1/2} \sum_{m=1}^{\infty} \left[\operatorname{ierfc}\left(\frac{2mL+x}{2\sqrt{\alpha t}}\right) + \operatorname{ierfc}\left(\frac{2mL-x}{2\sqrt{\alpha t}}\right)\right] \quad (0 \le x \le L; t \ge 0)$$

where the first term on the RHS is the well-known 1D Cartesian semi-infinite solution of the X20B1T0 problem [1, p. 75, Eq. (6)]. In addition, ierfc(z) is the complementary error function integral defined as [2, p. 498, Eq. (E.9a)]

$$\operatorname{ierfc}(z) = \int_{z}^{\infty} \operatorname{erfc}(t) dt$$

The relationship between the ierfc(z) function and the complementary error function erfc(z) returned by the Matlab function erfc is [2, p. 501, Eq. (E.14a)]

$$\operatorname{ierfc}(z) = \frac{e^{-z^2}}{\sqrt{\pi}} - z \operatorname{erfc}(z)$$

The short-time solution comes from the application of Laplace transform to the governing equations. It is valid at any time but it is computationally convenient at short times.

If the time t at a given location x is less than the 1D deviation time $t^{(dev)}$ [3, p. 5935, Eq. (19)], that is,

$$t^{(dev)} = \frac{0.1}{n\alpha} (2L - x)^2 \qquad (n = 1, 2, ..., 15),$$

we can consider only the first term in the above exact short-time solution with errors less than 10^{-n} . (Note that n = 2 is for visual comparison, while n = 15 is for verification purposes of large numerical codes.) Then, we have

$$T(x,t) \approx 2 \frac{q_0 \sqrt{\alpha t}}{k} \operatorname{ierfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

X22B10T0

James V. Beck, Filippo de Monte, et al. – December 5, 2011

This indicate that, at short times (less than the deviation time listed before), the thermal deviation effects due to the homogeneous 'inactive' boundary condition at x = L are negligible (less than 10^{-n}) and the 1D finite slab can be considered as 1D semi-infinite along x and subject to a time-independent surface heat flux.

Exact large-time solution ([2, p. 205, Eqs. (6.87) and (6.95)], [4, p. 2559, Eq. (25a)])

$$T(x,t) = \frac{q_0 L}{k} \left[\frac{\alpha t}{L^2} + \underbrace{\frac{1}{2} \left(\frac{x}{L}\right)^2 - \frac{x}{L} + \frac{1}{3}}_{\text{steady state component}} - \underbrace{2\sum_{m=1}^{\infty} \frac{1}{(m\pi)^2} \cos\left(m\pi \frac{x}{L}\right) e^{-(m\pi)^2 \frac{\alpha t}{L^2}}}_{\text{complementary transient component}} \right]$$

$$(0 \le x \le L; \ t \ge 0)$$

The large-time solution comes from the application of separation-of-variables (SOV) method to the governing equations. It is valid at any time but it is computationally convenient at large times.

If the time *t* is greater than a characteristic time $t^{(c)}$, that is,

$$t^{(c)} = \frac{n \ln 10}{\pi^2} \frac{L^2}{\alpha} \qquad (n = 1, 2, ..., 15),$$

we can consider at any location x only one term in the above exact large-time solution with errors less than 10^{-n} . Then, we have

$$T(x,t) \approx \frac{q_0 L}{k} \left[\frac{\alpha t}{L^2} + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{x}{L} + \frac{1}{3} - \frac{2}{\pi^2} \cos\left(\pi \frac{x}{L} \right) e^{-\pi^2 \frac{\alpha t}{L^2}} \right]$$

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

4 Dimensionless quantities

The Π theorem states that, with four basic dimensions, mass, [*M*], length, [*L*], time, [*t*] and temperature, [*T*], a reduction of up to four may be hoped for in the number of the variables (seven) involved in the X22B10T0 problem. Therefore, we have a total of three dimensionless groups

$$T_d = \frac{T}{q_0 L/k}, \qquad x_d = \frac{x}{L}, \qquad t_d = \frac{\alpha t}{L^2} = Fo,$$

where $x_d \in [0,1]$ and Fo is the well-known Fourier number.

4 Computation of the dimensionless temperature solution at any location and time

$$T_{d}(x_{d}, t_{d}) \approx \begin{cases} 2\sqrt{t_{d}} \operatorname{ierfc}\left(\frac{x_{d}}{2\sqrt{t_{d}}}\right) & \text{for } 0 \le t_{d} < t_{d}^{(p)} \\ t_{d} + \frac{x_{d}^{2}}{2} - x_{d} + \frac{1}{3} - 2\sum_{m=1}^{M} \frac{1}{(m\pi)^{2}} \cos\left(m\pi x_{d}\right) e^{-(m\pi)^{2}t_{d}} & \text{for } t_{d}^{(p)} \le t_{d} \le t_{d}^{(c)} \\ t_{d} + \frac{x_{d}^{2}}{2} - x_{d} + \frac{1}{3} - \frac{2}{\pi^{2}} \cos\left(\pi x_{d}\right) e^{-\pi^{2}t_{d}} & \text{for } t_{d} > t_{d}^{(c)} \end{cases}$$

where

• $t_d^{(p)}$ is the dimensionless partitioning time. In this case, it is exactly the same as the 1D deviation time defined before. In dimensionless form, we have

$$t_d^{(p)} = \frac{0.1}{n} (2 - x_d)^2 \qquad (n = 1, 2, ..., 15)$$

For n = 15, we have a machine accuracy, i.e. 10^{-15} , but the user can choose whichever accuracy s/he likes (10^{-n}) .

• *M* is the maximum number of terms in the summation given by [2, p. 153, Subsection 5.2.1]

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

$$M = \operatorname{ceil}\left(\frac{n\ln 10}{\pi^2 t_d}\right)^{1/2} \qquad (n = 1, 2, ..., 15)$$

where the function "ceil(*A*)" rounds the number *A* to the nearest integer greater than or equal to *A*. For n = 15, we have a machine accuracy but the user can choose the accuracy desired (10^{-n}) . The tail S_M of the summation $(2^{nd}$ expression of $T_d(x_d, t_d))$ is given by [2, p. 153, Eq. (5.13)]

$$S_M = \frac{1}{M\pi^{3/2}} \operatorname{ierfc}\left(M\pi t_d^{1/2}\right)$$

It is always less than 10^{-n} [5].

• $t_d^{(c)}$ is the dimensionless characteristic time defined before. In dimensionless form, we have

$$t_d^{(c)} = \frac{n \ln 10}{\pi^2} \qquad (n = 1, 2, ..., 15)$$

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

```
Matlab function: fX22B10T0.m
  % fX22B10T0.m function
  % Revision History
  % 11 12 11 written by James V. Beck and Filippo de Monte
  % calling sequence:
  % none called
  function Td=fX22B10T0(xd,td,n)
  if
         td==0
         Td=0;
  elseif 0<td<(0.1/n)*(2-xd)^2;</pre>
         arg=xd/sqrt(4*td);
         ierfc arg=(1/sqrt(pi))*exp(-arg^2)-arg*erfc(arg); %
  ierfc function
         Td=2*sqrt(td)*ierfc arg; % X20B1T0
  else
         M=round(sqrt(n*log(10)/(td*pi^2))); %maximum number of
  terms
         Td=td+((1/3)-xd+xd^2/2); % Start X22B10T0 case
         for m=1:M
              beta=m*pi; % m-th eigenvalue
             Xf=cos(beta*xd); % m-th eigenfunction
              Td=Td-2*exp(-beta^2*td)*Xf/beta^2;
         end % for m
  end % if
```

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

```
4 Matlab function: fvX22B10T0.m
```

```
% fvX22B10T0.m function
% Revision History
% 11 16 11. Added option of xd and td being vectors by James
V. Beck
% 11 12 11 written by James V. Beck and Filippo de Monte
% calling sequence:
% none called
function Td=fvX22B10T0(xd,td,n)
sizex=length(xd);
xdv=xd;
sizet=length(td);
tdv=td; % end vector option
Td=zeros(sizex, sizet); % Preallocating Arrays for speed
for it=1:sizet
    td=tdv(it);
    for ix=1:sizex
        xd=xdv(ix);
        if
               td==0
               Td(ix, it) = 0;
        elseif 0<td<(0.1/n)*(2-xd)^2;</pre>
               arg=xd/sqrt(4*td);
               ierfc arg=(1/sqrt(pi))*exp(-arg^2)-
                         arg*erfc(arg); % ierfc function
               Td(ix,it)=2*sqrt(td)*ierfc arg; % X20B1T0
        else
               M=round(sqrt(n*log(10)/(td*pi^2))); % maximum
number of terms
               Td(ix,it)=td+((1/3)-xd+xd^2/2); % Start
X22B10T0 case
               for m=1:M
                   beta=m*pi; % m-th eigenvalue
                   Xf=cos(beta*xd); % m-th eigenfunction
                   Td(ix, it) = Td(ix, it) - 2 \exp(-
                                      beta^2*td) *Xf/beta^2;
               end % for m
        end % if
    end % ix
end % it
```

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

Dimensionless temperature values for various dimensionless times and distances. 2D Plot

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

Dimensionless temperature values for various dimensionless times and distances. 3D Plot

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

Dimensionless temperature values for various dimensionless times and distances. Table

t_d	$x_d = 0$	$x_d = 0.25$	$x_d = 0.50$	$x_d = 0.75$	$x_d = 1.0$
0.00	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
0.01	0.11283792	0.00437714	0.00001435	0.00000000	0.00000000
0.02	0.15957691	0.02023475	0.00080165	0.00000841	0.00000004
0.03	0.19544100	0.03923836	0.00372182	0.00015023	0.00000484
0.04	0.22567583	0.05851013	0.00875429	0.00070229	0.00005741
0.05	0.25231325	0.07729750	0.01536594	0.00187860	0.00026934
0.06	0.27639532	0.09540469	0.02307429	0.00376392	0.00078555
0.07	0.29854108	0.11280721	0.03152836	0.00635986	0.00173473
0.08	0.31915391	0.12953703	0.04048632	0.00962972	0.00320662
0.09	0.33851415	0.14564372	0.04978409	0.01352296	0.00525097
0.10	0.35682625	0.16118032	0.05931089	0.01798635	0.00788529
0.11	0.37424506	0.17619814	0.06899204	0.02296853	0.01110419
0.12	0.39089169	0.19074503	0.07877719	0.02842164	0.01488727
0.13	0.40686340	0.20486485	0.08863241	0.03430182	0.01920511
0.14	0.42224011	0.21859759	0.09853486	0.04056907	0.02402351
0.15	0.43708878	0.23197957	0.10846913	0.04718709	0.02930629
0.16	0.45146649	0.24504372	0.11842483	0.05412294	0.03501718
0.17	0.46542247	0.25781991	0.12839499	0.06134676	0.04112089
0.18	0.47899972	0.27033519	0.13837488	0.06883148	0.04758385
0.19	0.49223611	0.28261407	0.14836133	0.07655259	0.05437457
0.20	0.50516519	0.29467879	0.15835220	0.08448788	0.06146375
0.25	0.56614563	0.35243165	0.20833595	0.12673502	0.10051579
0.30	0.62284151	0.40716475	0.25833370	0.17200191	0.14382443
0.35	0.67692827	0.46005430	0.30833338	0.21911236	0.18973830
0.40	0.72942308	0.51181837	0.35833334	0.26734830	0.23724357
0.45	0.78094613	0.56289533	0.40833333	0.31627134	0.28572053
0.50	0.83187595	0.61355281	0.45833333	0.36561386	0.33479071
0.55	0.88244361	0.66395420	0.50833333	0.41521247	0.38422306
0.60	0.93279016	0.71419925	0.55833333	0.46496742	0.43387651
0.65	0.98300172	0.76434885	0.60833333	0.51481782	0.48366494
0.70	1.03313089	0.81444018	0.65833333	0.56472648	0.53353578
0.75	1.08320974	0.86449594	0.70833333	0.61467073	0.58345693
0.80	1.13325788	0.91452998	0.75833333	0.66463669	0.63340879
0.85	1.18328727	0.96455076	0.80833333	0.71461591	0.68337940
0.90	1.23330521	1.01456345	0.85833333	0.76460322	0.73336146
0.95	1.28331616	1.06457119	0.90833333	0.81459547	0.78335050
1.00	1.33332285	1.11457592	0.95833333	0.86459074	0.83334381

X22B10T0

James V. Beck, Filippo de Monte, et al. - December 5, 2011

References

- 1. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford University Press, 2nd Edition, 1959.
- 2. Cole, K. D., Beck, J. V., Haji-Sheikh, A., and Litkouhi, B., Heat Conduction Using Green's Functions, 2nd Edition, CRC Press, Taylor & Francis, 2011.
- 3. de Monte, F., Beck, J. V., and Amos, D. E., Diffusion of thermal disturbances in two-dimensional Cartesian transient heat conduction, Int. J. Heat Mass Transfer, Vol. 51, No. 25-26, pp. 5931-5941, December 2008.
- 4. Beck, J. V., Wright, N. T., and Haji-Sheikh, A., Transient power variation in surface conditions in heat conduction for plates, Int. J. Heat Mass Transfer, 51 (2008) 2553-2565.
- 5. de Monte, F., Beck, J. V., Tail for $S_M = \sum_{m=M}^{\infty} \frac{e^{-\beta_m^2 \tilde{t}}}{\beta_m^2}$ and $\sum_{m=M}^{\infty} \frac{e^{-\beta_m^2 \tilde{t}}}{\beta_m^4}$, $\beta_m = m\pi$,

Unpublished Notes, December 2011.